Power Spectral Density of Nonlinear System Response: The Recursion Method

نویسنده

  • R. Val ery Roy
چکیده

Spectral densities of the response of nonlinear systems to white noise excitation are considered. By using a formal solution of the associated Fokker-Planck-Kolmogorov equation, response spectral densities are represented by formal power series expansion for large frequencies. The coe cients of the series, known as the spectral moments, are determined in terms of rst-order response statistics. Alternatively, a J -fraction representation of spectral densities can be achieved by using a generalization of the Lanczos algorithm for matrix tridiagonalization, known as the \recursion method". Sequences of rational approximations of increasing order are obtained. They are used for numerical calculations regarding the single-well and double-well Du ng oscillators, and Van der Pol type oscillators. Digital simulations demonstrate that the proposed approach can be quite reliable over large variations of the system parameters. Further, it is quite versatile as it can be used for the determination of the spectrum of the response of a broad class of randomly excited nonlinear oscillators, with the sole prerequisite being the availability, in exact or approximate form, of the stationary probability density of the response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaotic dynamic analysis and nonlinear control of blood glucose regulation system in type 1 diabetic patients

In this paper, chaotic dynamic and nonlinear control in a glucose-insulin system in types I diabetic patients and a healthy person have been investigated. Chaotic analysis methods of the blood glucose system include Lyapunov exponent and power spectral density based on the time series derived from the clinical data. Wolf's algorithm is used to calculate the Lyapunov exponent, which positive val...

متن کامل

A Legendre-spectral scheme for solution of nonlinear system of Volterra-Fredholm integral equations

This paper gives an ecient numerical method for solving the nonlinear systemof Volterra-Fredholm integral equations. A Legendre-spectral method based onthe Legendre integration Gauss points and Lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.

متن کامل

Absolute Acceleration Transfer Function of Secondary Systems Subjected to Multi- Component Earthquakes

The importance of the equipment and secondary systems in seismic design and performance evaluation is well recognized and has been the subject of many studies. In all of these studies, earthquake is considered as a single component, and in most of them the primary system is considered as shear building. Most attention has been concentrated on the response of secondary system and its response sp...

متن کامل

Absolute Acceleration Transfer Function of Secondary Systems Subjected to Multi- Component Earthquakes

The importance of the equipment and secondary systems in seismic design and performance evaluation is well recognized and has been the subject of many studies. In all of these studies, earthquake is considered as a single component, and in most of them the primary system is considered as shear building. Most attention has been concentrated on the response of secondary system and its response sp...

متن کامل

Nonlinear Analysis of Interaction with SVC in Stressed Power Systems: Effect of SVC Controller Parameters

In this paper, the effect of Static VAr Compensator (SVC) parameters on the nonlinear interaction of steam power plant turbine-generator set is studied using the Modal Series (MS) method. A second order representation of a power system equipped with SVC is developed and then by MS method the nonlinear interaction of torsional modes is assessed under various conditions and the most influencing f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993